This exam consists of three problems, worth a total of 40 points.
Problem 1 has one part, and is worth 15 points.
Problem 2 has three parts, and is worth 15 points.
Problem 3 has one part, and is worth 10 points.

Below are a few preliminaries and definitions that you may find useful for the exam.

- For an N-point discrete-time sequence $x[n]$ with $x[n]=0$ for $n<0$ and $n>N-1$, we denote its N-point discrete Fourier Transform (DFT) by $X[k]$, where $X[k]=0$ for $k<0$ and $k>N-1$. The analysis and synthesis equations are:

$$
\begin{array}{lll}
\text { Analysis equation: } \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} & 0 \leq k \leq N-1, \\
\text { Synthesis equation: } x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} & 0 \leq n \leq N-1,
\end{array}
$$

where $W_{N} \triangleq e^{-j(2 \pi / N)}$.

- For a general discrete time sequence $x[n]$, we denote its discrete-time Fourier Transform (DTFT), when it exists, by $X\left(e^{j \omega}\right)$. The analysis and synthesis equations are:

$$
\begin{aligned}
\text { Analysis equation: } X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
\text { Synthesis equation: } x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega .
\end{aligned}
$$

Similarly, the z-transform of a discrete-time signal $x[n]$ is given by $X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$.

1) [15 points] Let $X\left(e^{j \omega}\right)$ be the discrete time Fourier Transform (DTFT) of the discrete-time signal $x[n]=(1 / 2)^{n} u[n]$. Find a length- 5 sequence $g[n]$ whose five-point discrete Fourier transform (DFT) $G[k]$ is identical to the samples of the DTFT of $x[n]$ at $\omega_{k}=2 \pi k / 5$, i.e.,

$$
g[n]=0 \quad \text { for } \quad n<0, n>4
$$

and

$$
G[k]=X\left(e^{j 2 \pi k / 5}\right) \quad \text { for } \quad k=0,1, \ldots, 4 .
$$

Solution: The 5 samples of $X\left(e^{j \omega}\right)$ are effectively obtained by aliasing $x[n]$ to $0 \leq n<5$ and taking a DFT. For example, the aliased signal $g[0]$ will be the sum of the elements $x[0+5 m]$ over all (positive and negative) integers m. More generally, for $n=0,1, \ldots, 4$, we have

$$
\begin{aligned}
g[n] & =\sum_{m=-\infty}^{\infty} x[n+5 m] \\
& =\sum_{m=0}^{\infty} x[n+5 m] \quad \text { (since } x \text { is causal) } \\
& =\sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{n+5 m}=\left(\frac{1}{2}\right)^{n} \sum_{m=0}^{\infty}\left(\frac{1}{32}\right)^{m}=\left(\frac{1}{2}\right)^{n}\left(\frac{1}{1-1 / 32}\right)=\left(\frac{32}{31}\right)\left(\frac{1}{2}\right)^{n} .
\end{aligned}
$$

Note that we can obtain this general formula using the DFT synthesis equation directly:

$$
\begin{aligned}
g[n] & =\frac{1}{N} \sum_{k=0}^{N-1} X\left(e^{j 2 \pi k / N}\right) e^{j 2 \pi k n / N} \\
& =\frac{1}{N} \sum_{k=0}^{N-1}\left(\sum_{m=-\infty}^{\infty} x[m] e^{-j 2 \pi k m / N}\right) e^{j 2 \pi k n / N} \\
& =\sum_{m=-\infty}^{\infty} x[m]\left(\sum_{k=0}^{N-1}\left(\frac{1}{N}\right) e^{j 2 \pi k(n-m) / N}\right) \\
& =\sum_{m=-\infty}^{\infty} x[m] \sum_{r=-\infty}^{\infty} \delta[n-m+r N] \quad \text { (the second sum is the FS rep'n of an impulse train) } \\
& =\sum_{r=-\infty}^{\infty}\left(\sum_{m=-\infty}^{\infty} x[m] \delta[n+r N-m]\right)=\sum_{r=-\infty}^{\infty} x[n+r N]
\end{aligned}
$$

which is essentially the same as the expression above.

An alternative approach would use the DTFT of $x[n]$ directly:

$$
g[n]=\frac{1}{5} \sum_{k=0}^{N-1} \underbrace{e^{j 2 \pi k n / 5}}_{\left.X\left(e^{j \omega}\right)\right|_{\omega=2 k \pi / 5} ^{\left(\frac{1}{1-(1 / 2) e^{-j 2 \pi k / 5}}\right)}}
$$

but this could be cumbersome to evaluate.
2) [15 points total, 3 parts] In the figure below, $H(z)$ is the system function of a causal linear time invariant (LTI) system.

a) [5 points] Using z-transforms of the signals shown in the figure, obtain an expression for $W(z)$ in the form

$$
W(z)=H_{1}(z) X(z)+H_{2}(z) E(z)
$$

where both $H_{1}(z)$ and $H_{2}(z)$ are expressed in terms of $H(z)$.
Solution: It is easy to see that

$$
\begin{aligned}
V(z) & =X(z)-W(z) \\
W(z) & =V(z) H(z)+E(z)
\end{aligned}
$$

so solving for $W(z)$ gives

$$
W(z)=\underbrace{\left(\frac{H(z)}{1+H(z)}\right)}_{H_{1}(z)} X(z)+\underbrace{\left(\frac{1}{1+H(z)}\right)}_{H_{2}(z)} E(z)
$$

b) [5 points] For the special case $H(z)=z^{-1} /\left(1-z^{-1}\right)$, determine $H_{1}(z)$ and $H_{2}(z)$.

Solution: By straightforward calculation,

$$
H_{1}(z)=\frac{\frac{z^{-1}}{1-z^{-1}}}{1+\frac{z^{-1}}{1-z^{-1}}}=\frac{z^{-1}}{1-z^{-1}+z^{-1}}=z^{-1}, \quad H_{2}(z)=\frac{1}{1+\frac{z^{-1}}{1-z^{-1}}}=1-z^{-1}
$$

c) [5 points] Is the system $H(z)$ stable? Are the systems $H_{1}(z)$ and $H_{2}(z)$ stable?

Solution: The system $H(z)$ is not stable because it has a pole at $z=1$. But, the systems $H_{1}(z)$ and $H_{2}(z)$ are each stable - indeed, it is easy to see that both $H_{1}(z)$ and $H_{2}(z)$ have impulse responses of finite duration:

$$
h_{1}[n]=\left\{\begin{array}{ll}
1, & n=1 \\
0, & \text { otherwise }
\end{array} \quad h_{2}[n]= \begin{cases}1, & n=0 \\
-1, & n=1 \\
0, & \text { otherwise }\end{cases}\right.
$$

and their ROC's contain the entire z-plane except for $z=0$.
3) [$\mathbf{1 0}$ points] Suppose $x[n]$ is a finite-duration discrete-time signal that is known to be zero for all $n<0$.

Show that if $x[n]$ is also binary-valued (i.e., its nonzero components can only take the value 1) it can be recovered exactly from its z-transform evaluated at the single point $z=1 / 2$. That is, provide a simple strategy for recovering causal, binary-valued signals $x[n]$ from $\left.X(z)\right|_{z=1 / 2}$.

Solution: We begin by writing the expression for $X(1 / 2)$:

$$
\begin{aligned}
X(1 / 2) & =\sum_{n=-\infty}^{\infty} x[n](1 / 2)^{-n} \\
& =\sum_{n=0}^{\infty} x[n] 2^{n} \quad \text { (since } x \text { is causal) }
\end{aligned}
$$

Now, if $x[n]$ is also binary-valued, then the sum on the right-hand side is just a sum of integer powers of 2 , each with weight 0 or 1 . But, this is just the decimal representation of the number represented by the binary expansion $\ldots x[4] \ldots x[3] \ldots x[2] \ldots x[1] \ldots x[0]$. Further, the assumption that $x[n]$ be of finite duration guarantees that this number will be finite (so that $z=1 / 2$ is in the ROC).

Thus, $x[n]$ can be reconstructed as follows. First, find the binary representation of the (real, integer) value $X(1 / 2)$. Then, impute the values $x[0], x[1], \ldots$ from the binary expansion starting with the least-significant bit.

